Objectives: Chromosome 3-linked frontotemporal dementia (FTD-3) is caused by a c.532-1G > C mutation in the CHMP2B gene. It is extensively studied in a Danish family comprising one of the largest families with an autosomal dominantly inherited frontotemporal dementia (FTD).
View Article and Find Full Text PDFBackground: Weight loss therapy is becoming more and more important, and two classes of molecules, namely amylin receptor and GLP-1 receptor agonists, have shown promise in this regard. Interestingly, these molecules have several overlapping pharmacological effects, such as suppression of gastric emptying, reduction of glucagon secretion and weight loss in common; however, they also have distinct effects on prandial insulin secretion. Hence, a combination of these two mechanisms is of significant interest.
View Article and Find Full Text PDFSingle-nucleotide polymorphisms in the TMEM106B gene have been identified as a risk factor in frontotemporal dementia (FTD). The major allele of SNP rs3173615 is a risk factor in sporadic FTD, whereas the minor allele seems protective in GRN- and C9orf72-mediated FTD. The role of apolipoprotein E (ApoE) in FTD is uncertain, though an established risk factor in Alzheimer's disease.
View Article and Find Full Text PDFKBP-042 is a dual amylin and calcitonin receptor agonist that increases glucose tolerance and insulin action and reduces body weight in rat models of obesity and prediabetes. The objective of the present study was to 1) evaluate KBP-042 as a treatment of late-stage type 2 diabetes in a rat model and 2) assess the value of adding KBP-042 to the standard of care, metformin, to consider KBP-042 as a relevant drug for treating patients with type 2 diabetes. Two studies were included: an intervention study and a prevention study.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2017
Amylin and GLP-1 agonism induce a well-known anorexic effect at dose initiation, which is managed by dose escalation. In this study we investigated how to optimize tolerability while maintaining efficacy of a novel, highly potent dual amylin and calcitonin receptor agonist (DACRA), KBP-089. Furthermore, we tested the GLP-1 add-on potential of KBP-089 in high-fat diet (HFD)-fed rats.
View Article and Find Full Text PDF