Publications by authors named "S Trembleau"

The heterogeneous nuclear ribonucleoprotein A2 (hnRNP-A2) has been described as an important autoantigen in rheumatoid arthritis (RA) since it is targeted by autoantibodies, autoreactive T cells, and is aberrantly expressed in synovial cells in patients. To identify hnRNP-A2-specific T-cell epitopes possibly associated with pathogenicity, we used an innovative approach. We first scanned 280 overlapping hnRNP-A2 peptides for binding to the RA-associated class II molecules HLA-DR4 and HLA-DR1, leading to a comprehensive selection of binders.

View Article and Find Full Text PDF

Autoimmunity to ubiquitously expressed macromolecular nucleic acid-protein complexes such as the nucleosome or the spliceosome is a characteristic feature of systemic autoimmune diseases. Disease-specificity and/or association with clinical features of some of these autoimmune responses suggest pathogenic involvement which, however, has been proven in only a few cases so far. Although the mechanisms leading to autoimmunity against nucleic acid-containing complexes are still far from being fully understood, there is increasing experimental evidence that the nucleic acid component may act as a co-stimulator or adjuvans via activation of nucleic acid-binding receptor systems such as Toll-like receptors in antigen-presenting cells.

View Article and Find Full Text PDF

Human TNF-alpha transgenic (hTNFtg) mice develop erosive arthritis closely resembling rheumatoid arthritis (RA). To investigate mechanisms leading to pathological autoimmune reactions in RA, we examined hTNFtg animals for the presence of RA-associated autoantibodies including Abs to citrullinated epitopes (anti-cyclic citrullinated peptide), heterogeneous nuclear ribonucleoprotein (hnRNP)-A2 (anti-RA33), and heat shock proteins (hsp) (anti-hsp). Although IgM anti-hsp Abs were detected in 40% of hTNFtg and control mice, IgG anti-hsp Abs were rarely seen, and anti-cyclic citrullinated peptide Abs were not seen at all.

View Article and Find Full Text PDF

IL-12 administration to nonobese diabetic (NOD) mice induces IFN-gamma-secreting type 1 T cells and high circulating IFN-gamma levels and accelerates insulin-dependent diabetes mellitus (IDDM). Here we show that IL-12-induced IFN-gamma production is dispensable for diabetes acceleration, because exogenous IL-12 could enhance IDDM development in IFN-gamma-deficient as well as in IFN-gamma-sufficient NOD mice. Both in IFN-gamma(+/-) and IFN-gamma(-/-) NOD mice, IL-12 administration generates a massive and destructive insulitis characterized by T cells, macrophages, and CD11c(+) dendritic cells, and increases the number of pancreatic CD4(+) cells secreting IL-2 and TNF-alpha.

View Article and Find Full Text PDF

Nonobese diabetic (NOD) and NOD-DRalpha transgenic (tg) mice, expressing Aalpha(d):Abeta(g7) and Aalpha(d):Abeta(g7) plus DRalpha:Ebeta(g7) class II molecules, respectively, both develop insulin-dependent diabetes mellitus (IDDM), whereas NOD-Ealpha tg mice expressing Aalpha(d):Abeta(g7) plus Ealpha:Ebeta(g7) are protected. We show that IL-12 administration induces rapid IDDM onset in NOD-DRalpha but fails to provoke insulitis and diabetes in NOD-Ealpha tg mice. Nevertheless, T cells from IL-12-treated NOD-Ealpha tg mice secrete IFN-gamma and transfer IDDM to NOD-SCID and NOD-Ealpha-SCID recipients, demonstrating the presence of peripheral diabetogenic Th1 cells in the protected mice.

View Article and Find Full Text PDF