A detailed toxicological study on several pesticides, including chlorothalonil, cyprodynil, dichlobénil, pendimethaline, trifluraline, and alpha-endosulfan, present at trace levels in air and total atmospheric precipitations of Paris is presented. The pesticides contained in the atmospheric samples, collected during sampling campaigns in February-March 2007, are identified and quantified by a high-performance liquid chromatographic (HPLC)-UV detection method. The toxicity measurements are performed by means of the Microtox bioluminescence method, based on the evaluation of the bioluminescence inhibition of the Vibrio fischeri marine bacteria at two exposure times to the pesticide solutions.
View Article and Find Full Text PDFThe risk factors that define the metabolic syndrome lead to an accelerated development of atherosclerosis, cardiovascular diseases in apparently healthy persons. The goal of the research is determining the prevalence of the metabolic syndrome as well as the participation of the risk factors that define this condition in apparently healthy persons. The metabolic syndrome is defined according to the National Cholesterol Education Program Expert Panel.
View Article and Find Full Text PDFDiuron (N'-[3,4-dichlorophenyl]-N,N-dimethylurea) is a herbicide belonging to the phenylurea family, widely used to destroy weeds on uncultivated surfaces. Because of its toxicity for aquatic organisms and suspicion of being carcinogenic for humans, diuron is the object of growing environmental concern. Therefore, we have developed the electro-Fenton method, an electrochemical advanced oxidation process (EAOP), to degrade diuron in aqueous medium, and we have studied the evolution of the toxicity of treated solution during the process.
View Article and Find Full Text PDFCurr Drug Targets
September 2006
The fluorescence properties of anticancer drugs (ACDs), including steady-state native fluorescence, time-resolved fluorescence, fluorescence polarization, excimer and exciplex emission, laser-induced fluorescence (LIF) with one- or two-photon excitation are reviewed, as well as the use of fluorogenic labels and fluorescent probes for the non-fluorescent ACDs. The interest of monitoring the fluorescence spectral changes to study the interactions of ACDs with biomolecules, such as DNA, proteins, vesicles, and the formation of complexes is discussed. The fluorescence methodologies used for ACDs studies, including fluorescence with two-photon excitation, liquid chromatography and capillary electrophoresis with fluorescence and laser-induced fluorescence (LIF) detection, and fluorescence microscopy, are also surveyed.
View Article and Find Full Text PDF