A selective magnetic molecularly imprinted polymer (MMIP) was synthetized with 4-chloro-2-methylphenoxyacetic acid as template and 4-vinylpiridine as monomer in presence of vinylized magnetite nanoparticles. Scanning electron microscopy, nitrogen adsorption-desorption isotherms, Fourier transform infrared spectrometry and vibrating sample magnetometry were applied to characterize the resulting material. The synthesized MMIP was applied as sorbent in magnetic molecularly imprinted solid-phase extraction (MMISPE) for selective extraction of a mixture of the five herbicides 4-chloro-2-methylphenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butyric acid (MCPB), mecoprop (MCPP), fenoxaprop (FEN) and haloxyfop (HAL).
View Article and Find Full Text PDFTalanta
March 2021
This paper describes the fabrication of a novel microbore monolithic column modified with magnetite nanoparticles (MNPs) prepared in a poly(ethylene-co-tetrafluoroethylene) (EFTE) tubing, and its application as stationary phase for the chromatographic separation of phosphorylated compounds. In order to obtain the composite column, a two-step procedure was performed. The formation of a glycidyl methacrylate-based monolith inside the activated ETFE tube was firstly carried out.
View Article and Find Full Text PDFIn this study, poly(butyl methacrylate-co-ethyleneglycol dimethacrylate) polymeric monoliths were in situ developed within 0.75 mm i.d.
View Article and Find Full Text PDFIn this study, porous polymer monoliths were in situ synthesized in fluoropolymers tubing to prepare microbore HPLC columns. To ensure the formation of robust homogeneous polymer monoliths in these housing supports, the inner surface of fluoropolymer tubing was modified in a two-step photografting process. Raman spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the inner poly(ethylene-co-tetrafluoroethylene) (ETFE) wall and the subsequent attachment of a monolith onto the wall.
View Article and Find Full Text PDFA polymeric material modified with magnetic nanoparticles (MNPs) has been synthesized and evaluated as sorbent both for solid-phase extraction (SPE) and dispersive magnetic solid-phase extraction (MSPE) of phospholipids (PLs) in human milk samples. The synthesized sorbent was characterized by scanning electron microscopy and its iron content was also determined. Several experimental variables that affect the extraction performance (e.
View Article and Find Full Text PDF