Previously, we demonstrated that when mesenchymal stem cells (MSCs) from mouse ES cells were transplanted into skeletal muscle, more than 60% of them differentiated into muscles in the crush-injured tibialis anterior muscle in vivo, although MSCs neither differentiated nor settled in the intact muscle. Microenvironments, including the extracellular matrix between the injured and intact muscle, were quite different. In the injured muscle, hyaluronan (HA), heavy chains of inter-α-inhibitor (IαI), CD44, and TNF-α-stimulated gene 6 product (TSG-6) increased 24-48 h after injury, although basement membrane components of differentiated muscle such as perlecan, laminin, and type IV collagen increased gradually 4 days after the crush.
View Article and Find Full Text PDFCatheter ablation is an established treatment for atrial fibrillation (AF). The incidence of major complications related to the procedure is reported to be 4.5%, and delayed cardiac tamponade (DCT) is a rare, although recently recognized, complication.
View Article and Find Full Text PDFWe recently characterized DahlS.Z-Leprfa/Leprfa (DS/obese) rats, derived from a cross between Dahl salt-sensitive rats and Zucker rats, as a new animal model of metabolic syndrome (MetS). Although the phenotype of DS/obese rats is similar to that of humans with MetS, the pathophysiological and metabolic characteristics in each cell type remain to be clarified.
View Article and Find Full Text PDFWe previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation.
View Article and Find Full Text PDFWe establish a novel method for the induction and collection of mesenchymal stem cells using a typical cell surface marker, CD105, through adipogenesis from mouse ES cells. ES cells were cultured in a medium for adipogenesis. Mesenchymal stem cells from mouse ES cells were easily identified by the expression of CD105, and were isolated and differentiated into multiple mesenchymal cell types.
View Article and Find Full Text PDF