Publications by authors named "S Tonti"

Background: Glaucoma is a leading cause of irreversible blindness worldwide, necessitating precise management strategies tailored to individual patient characteristics. Artificial intelligence (AI) holds promise in revolutionizing the approach to glaucoma care by providing personalized interventions.

Aim: This review explores the current landscape of AI applications in the personalized management of glaucoma patients, highlighting advancements, challenges, and future directions.

View Article and Find Full Text PDF

Background: Smartphone use is widely spreading in society. Their embedded functions and sensors may play an important role in therapy monitoring and planning. However, the use of smartphones for intrapersonal behavioral and physical monitoring is not yet fully supported by adequate studies addressing technical reliability and acceptance.

View Article and Find Full Text PDF

Fusarium fujikuroi causes bakanae ("foolish seedling") disease of rice which is characterized by hyper-elongation of seedlings resulting from production of gibberellic acids (GAs) by the fungus. This plant pathogen is also known for production of harmful mycotoxins, such as fusarins, fusaric acid, apicidin F and beauvericin. Recently, we generated the first de novo genome sequence of F.

View Article and Find Full Text PDF

An epidemic fungal disease caused by Fusarium proliferatum, responsible for fumonisin production (FB1, FB2, and FB3), has been reported in the main garlic-producing countries in recent years. Fumonisins are a group of structurally related toxic metabolites produced by this pathogen. The aim of this work was to establish an enzyme-linked immunosorbent assay (ELISA) procedure, mostly applied to cereals, that is suitable for fumonisin detection in garlic and compare these results to those obtained by high-performance liquid chromatography (HPLC) and screening of fresh and dehydrated garlic for toxicological risk.

View Article and Find Full Text PDF

Background And Objectives: The automated analysis of indirect immunofluorescence images for Anti-Nuclear Autoantibody (ANA) testing is a fairly recent field that is receiving ever-growing interest from the research community. ANA testing leverages on the categorization of intensity level and fluorescent pattern of IIF images of HEp-2 cells to perform a differential diagnosis of important autoimmune diseases. Nevertheless, it suffers from tremendous lack of repeatability due to subjectivity in the visual interpretation of the images.

View Article and Find Full Text PDF