Detecting antibodies, particularly those targeting donor human leukocyte antigens in organ transplantation and self-antigens in autoimmune diseases, is crucial for diagnosis and therapy. Radioprotective 105 (RP105), a Toll-like receptor family protein, is expressed in immune-competent cells, such as B cells. Studies in mice have shown that the anti-mouse RP105 antibody strongly activates B cells and triggers an adjuvant effect against viral infections.
View Article and Find Full Text PDFAspirin, a nonsteroidal anti-inflammatory drug, has been proven effective in a clinical trial of carcinogenesis blockade. However, various modes of action have been reported for these effects. Thus, in this study, we aimed to present reasonable mode of actions as a proof of concept for human trials, especially trials for patients with familial adenomatous polyposis (FAP).
View Article and Find Full Text PDFSa15-21, a monoclonal antibody against mouse Toll-like receptor (TLR) 4, can protect mice from lipopolysaccharide (LPS)/D-galactosamine-induced acute lethal hepatitis. Herein, we investigated the molecular mechanisms underlying Sa15-21-mediated regulation of TLR4 signaling in macrophages. Results showed that Sa15-21 enhanced the production of proinflammatory cytokines and attenuated the production of anti-inflammatory cytokines in LPS-stimulated macrophages.
View Article and Find Full Text PDFFor its cell surface expression, radioprotective 105 (RP105) - an orphan Toll-like receptor - must form a complex with a soluble glycoprotein called myeloid differentiation 1 (MD-1). The number of RP105-negative cells is significantly increased in patients with systemic lupus erythematosus (SLE); however, to elucidate the mechanism underlying this increase, how RP105 is expressed on the cell surface depending on MD-1 should be investigated. We demonstrated that RP105 exhibits two forms depending on MD-1 and its two N-glycosylation sites, N96 and N156.
View Article and Find Full Text PDF