Metalloporphyrins have been widely utilized as building blocks for molecular self-assembly in organic solvents, but their application in water is less common due to competition from water molecules for the metal center. However, Co(III) metalloporphyrins are notable for their strong binding to two aromatic amine ligands in aqueous buffers. In this study, we present a comprehensive investigation of the binding behavior of Co(III) tetraphenyl sulfonic acid porphyrin with selected aromatic and aliphatic amines in aqueous solution.
View Article and Find Full Text PDFHere we report a detailed study of the interactions of nanoparticles, formed by the self-assembly of cholesterol-containing porphyrins, with lipid membranes. We show that the interaction is a two-step process: first, the docking and fusion, then, the redistribution of the building blocks of the self-assembled nanoparticles (SANs henceforth). Analysis of the binding and structural data is consistent with the docking step being driven by a multivalence cooperative effect and with the formation of SAN aggregates on the membrane, whilst the solubility of the cholesterol anchor in the membrane is key to both the fusion and redistribution of the SANs building blocks.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) represents around 3% of all cancers, with the most frequent histological types being clear-cell RCC (ccRCC), followed by papillary (pRCC) and chromophobe (chRCC). Hypoxia-inducible factors (HIFs), which promote the expression of various target genes, including vascular endothelial growth factor (VEGF) and the high- affinity glucose transporter 1, have an important role in the pathogenesis of RCC. This study investigated the immunohistochemical expression of HIF-1α and VEGF-A, showing significantly higher HIF-1α nuclear expression in pRCC compared to ccRCC, while there was no significant difference in VEGF-A protein expression between the analyzed histological RCC subtypes.
View Article and Find Full Text PDF