Wheat yields have plateaued in the UK over the last 25 years, during which time most arable land has been annually cropped continuously with short rotations dominated by cereals. Arable intensification has depleted soil organic matter and biology, including mycorrhizas, which are affected by tillage, herbicides, and crop genotype. Here, we test whether winter wheat yields, mycorrhization, and shoot health can be improved simply by adopting less intensive tillage and adding commercial mycorrhizal inoculum to long-term arable fields, or if 3-year grass-clover leys followed direct drilling is more effective for biological regeneration of soil with reduced N fertiliser.
View Article and Find Full Text PDFBiomed Opt Express
June 2021
Fluorescence lifetime imaging microscopy (FLIM) with phasor analysis provides easy visualization and analysis of fluorophores' lifetimes which is valuable for multiple applications including metabolic imaging, STED imaging, FRET imaging and functional imaging. However, FLIM imaging typically suffers from low photon budgets, leading to unfavorable signal to noise ratios which in many cases prevent extraction of information from the data. Traditionally, median filters are applied in phasor analysis to tackle this problem.
View Article and Find Full Text PDFBelowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated with the mycorrhizal fungus Rhizophagus irregularis and the rhizobacterial strain Pseudomonas putida KT2440. The cultivar with high mycorrhizal compatibility supported higher levels of rhizobacterial colonization than the low compatibility cultivar.
View Article and Find Full Text PDFMycorrhizal functioning in the fern Ophioglossum is complex and poorly understood. It is unknown whether mature O. vulgatum sporophytes form mutualistic associations with fungi of the Glomeromycota and with what specificity.
View Article and Find Full Text PDFThe arbuscular mycorrhizal (AM) fungal symbiosis is widely hypothesized to have promoted the evolution of land plants from rootless gametophytes to rooted sporophytes during the mid-Palaeozoic (480-360 Myr, ago), at a time coincident with a 90% fall in the atmospheric CO(2) concentration ([CO(2)](a)). Here we show using standardized dual isotopic tracers ((14)C and (33)P) that AM symbiosis efficiency (defined as plant P gain per unit of C invested into fungi) of liverwort gametophytes declines, but increases in the sporophytes of vascular plants (ferns and angiosperms), at 440 p.p.
View Article and Find Full Text PDF