Publications by authors named "S Thompson-Gorman"

Endothelial cell-derived oxygen free radicals are important mediators of postischemic injury; however, the mechanisms that trigger this radical generation are not known, and it is not known if this process can occur in human cells and tissues. The enzyme xanthine oxidase can be an important source of radical generation; however, it has been reported that this enzyme may not be present in human endothelium. To determine the presence and mechanisms of radical generation in human vascular endothelial cells subjected to anoxia and reoxygenation, electron paramagnetic resonance measurements were performed on cultured human aortic endothelial cells using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO).

View Article and Find Full Text PDF

The effects of coenzyme Q10 (CoQ) were studied in isolated, isovolumic rat hearts during a 30-min period of global ischemia followed by 40 min of reperfusion. After reperfusion 1) the relative recovery of developed pressure (DP) was increased by CoQ (75 vs. 40% of the preischemic value for 20 microM CoQ and control hearts, respectively, P < 0.

View Article and Find Full Text PDF

The endothelial cell is thought to be an important site of free radical generation in ischemic tissues. It has been demonstrated that endothelial cells from several species generate a burst of free radical generation upon reoxygenation; however, it has been suggested that human endothelial cells are not similarly capable of generating free radicals on reoxygenation. In view of the central importance of revascularization with accompanying reoxygenation in the clinical treatment of tissue ischemia/infarction, we have performed studies to determine the presence, mechanism, and kinetics of free radical generation in human endothelial cells.

View Article and Find Full Text PDF

The purpose of this study was to determine the neural output of pulmonary stretch receptors (PSRs) in response to conditions that, in previous studies (J. Appl. Physiol.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) spectroscopy can be applied to measure oxygen concentrations in cells and tissues. Oxygen is paramagnetic, and thus it interacts with a free radical label resulting in a broadening of the observed linewidth. Recently we have developed instrumentation in order to enable the performance of EPR spectroscopy and EPR oximetry in the intact beating heart.

View Article and Find Full Text PDF