Objective: Vanishing viral RNA restricts our ability to detect ancient pathogens, so, we used paleo serological approaches to trace the dynamics of the Coronavirus in ancient populations.
Materials And Methods: We investigated 10 ancient dental calculus samples collected from a cemetery dated to the beginning of the 19th century and excavated in Charleville-Mézières. After paleoserum samples were extracted from dental calculus, paleoserology using mini-line-blot incorporating one alpha-Coronavirus (Coronavirus 229 E) and two beta-Coronavirus (Coronavirus OC 43, SARS-CoV-2) antigens and controls was completed by an automated Western blotting assay.
Genomic studies conducted on ancient individuals across Europe have revealed how migrations have contributed to its present genetic landscape, but the territory of present-day France has yet to be connected to the broader European picture. We generated a large dataset comprising the complete mitochondrial genomes, Y-chromosome markers, and genotypes of a number of nuclear loci of interest of 243 individuals sampled across present-day France over a period spanning 7,000 y, complemented with a partially overlapping dataset of 58 low-coverage genomes. This panel provides a high-resolution transect of the dynamics of maternal and paternal lineages in France as well as of autosomal genotypes.
View Article and Find Full Text PDF