Publications by authors named "S Thibivilliers"

The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria.

View Article and Find Full Text PDF

Single-cell transcriptomics technologies allow researchers to investigate how individual cells, in complex multicellular organisms, differentially use their common genomic DNA. In plant biology, these technologies were recently applied to reveal the transcriptomes of various plant cells isolated from different organs and different species and in response to environmental stresses. These first studies support the potential of single-cell transcriptomics technology to decipher the biological function of plant cells, their developmental programs, cell-type-specific gene networks, programs controlling plant cell response to environmental stresses, etc.

View Article and Find Full Text PDF

Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots.

View Article and Find Full Text PDF

The pig skin architecture and physiology are similar to those of humans. Thus, the pig model is very valuable for studying skin biology and testing therapeutics. The single-cell RNA sequencing (scRNA-seq) technology allows quantitatively analyzing cell types, compositions, states, signaling, and receptor-ligand interactome at single-cell resolution and at high throughput.

View Article and Find Full Text PDF