Effective approaches using array technologies are critical to understand the molecular bases of human diseases. The results obtained using such procedures require analysis and validation procedures that are still under development. In the context of Alzheimer's disease, in which the identification of molecular mechanisms of underlying pathologies is vital, we describe a robust assay that is the first real-time reverse transcriptase-polymerase chain reaction-based high-throughput approach that can simultaneously quantitate the expression of a large number of genes at the copy number level from a minute amount of starting material.
View Article and Find Full Text PDFNeurodegenerative diseases typically affect subpopulations of neurons. Characterizing these vulnerable cells and identifying the factors that make them susceptible to damage while neighboring cells remain resistant are essential to the understanding of molecular pathogenesis that underlies neurodegenerative diseases. Classically, molecular analysis of the central nervous system involves the identification and isolation of an anatomic region of interest; next, the relevant tissue is pulverized, and the resulting homogenate is analyzed.
View Article and Find Full Text PDFLoss of synapses correlates with cognitive decline in Alzheimer's disease (AD). However, molecular mechanisms underlying the synaptic dysfunction and loss are not well understood. In this study, microarray analysis of brain tissues from five AD cases revealed a reduced expression of a group of related genes, all of which are involved in synaptic vesicle (SV) trafficking.
View Article and Find Full Text PDFThe mammalian inner ear contains two sensory organs, the cochlea and vestibule. Their sensory neuroepithelia are characterized by a mosaic of hair cells and supporting cells. Cochlear hair cells differentiate in four rows: a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs).
View Article and Find Full Text PDF