Multiple myeloma (MM) malignant plasma cells accumulate in the bone marrow (BM) where their interactions with the microenvironment promote disease progression and drug resistance. Previously, we have shown that bone marrow mesenchymal stem cells (BM-MSCs) (MM and normal donors- ND) derived extracellular matrix (ECM) affected MM cell lines differentially with a pro-MM effect attributed to MM-MSCs' ECM. Here we studied the composition of BM-MSC's ECM (ND versus MM) with focus on elastin (ELN).
View Article and Find Full Text PDFBackground: Immunoglobulin G4-related disease (IgG4-RD) is a chronic, immune-mediated condition characterized by fibro-inflammatory lesions with lymphoplasmacytic infiltration. Diagnosis traditionally relies on histopathological findings, including the presence of IgG4+ plasma cells. However, due to challenges in biopsy accessibility, additional measures are needed to facilitate diagnosis.
View Article and Find Full Text PDFBackground: Seeding of skin cancer cells following diagnostic or therapeutic surgical procedures can occur and might cause local recurrences. As current preferred therapy for skin malignancy is surgical excision, seeding of tumour cells by manipulating malignant tissue or suturing can be another factor leading to recurrences.
Objective: To evaluate whether genetic material and malignant cells adhere to standard suture materials.
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs. Key players mediating fibrosis are myofibroblasts (MF) that, following transforming growth factor β (TGFβ) exposure, produce a collagen-rich extracellular matrix (ECM) that induces myofibroblast differentiation. Myofibroblasts express αvβ3 integrin (a membrane receptor for thyroid hormones) and miRNA-21 that promotes deiodinase-type-3 expression (D3), causing the degradation of triiodothyronine (T3) that attenuates fibrosis.
View Article and Find Full Text PDF