Polycomb Repressive Complex 2 (PRC2) is crucial for the coordinated expression of genes during early embryonic development, catalyzing histone H3 lysine 27 trimethylation. Two distinct PRC2 complexes, PRC2.1 and PRC2.
View Article and Find Full Text PDFDuring vertebrate gastrulation, mesoderm is induced in pluripotent cells, concomitant with dorsal-ventral patterning and establishing of the dorsal axis. We applied single-cell chromatin accessibility and transcriptome analyses to explore the emergence of cellular heterogeneity during gastrulation in Xenopus tropicalis. Transcriptionally inactive lineage-restricted genes exhibit relatively open chromatin in animal caps, whereas chromatin accessibility in dorsal marginal zone cells more closely reflects transcriptional activity.
View Article and Find Full Text PDFPolycomb-mediated repression of gene expression is essential for development, with a pivotal role played by trimethylation of histone H3 lysine 27 (H3K27me3), which is deposited by Polycomb Repressive Complex 2 (PRC2). The mechanism by which PRC2 is recruited to target genes has remained largely elusive, particularly in vertebrates. Here we demonstrate that MTF2, one of the three vertebrate homologs of Drosophila melanogaster Polycomblike, is a DNA-binding, methylation-sensitive PRC2 recruiter in mouse embryonic stem cells.
View Article and Find Full Text PDFIn cells starved for leucine, lysine or glutamine heat shock factor 1 (HSF1) is inactivated and the level of the transcripts of the HSF1 target genes HSPA1A (Hsp70) and DNAJB1 (Hsp40) drops. We show here that in HEK293 cells deprived of methionine HSF1 was similarly inactivated but that the level of HSPA1A and DNAJB1 mRNA increased. This increase was also seen in cells expressing a dominant negative HSF1 mutant (HSF379 or HSF1-K80Q), confirming that the increase is HSF1 independent.
View Article and Find Full Text PDFTo assess the consequences of inactivation of heat shock factor 1 (HSF1) during aging, we analyzed the effect of HSF1 K80Q, a mutant unable to bind DNA, and of dnHSF1, a mutant lacking the activation domain, on the transcriptome of cells 6 and 24 h after heat shock. The primary response to heat shock (6 h recovery), of which 30 % was HSF1-dependent, had decayed 24 h after heat shock in control cells but was extended in HSF1 K80Q and dnHSF1 cells. Comparison with literature data showed that even the HSF1 dependent primary stress response is largely cell specific.
View Article and Find Full Text PDF