We report experimental methodologies utilising transmission electron microscopy (TEM) as an imaging tool for reaction kinetics at the single molecule level, in direct space and with spatiotemporal continuity. Using reactions of perchlorocoronene (PCC) in nanotubes of different diameters and at different temperatures, we found a period of molecular movement to precede the intermolecular addition of PCC, with a stronger dependence of the reaction rate on the nanotube diameter, controlling the local environments around molecules, than on the reaction temperature (-175, 23 or 400 °C). Once initiated, polymerisation of PCC follows zero-order reaction kinetics with the observed reaction cross section of 1.
View Article and Find Full Text PDFIndium selenides (InSe) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InSe by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InSe we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InSe.
View Article and Find Full Text PDFA methodology for measuring activation parameters of a thermally driven chemical reaction by direct imaging and counting reactant molecules has been developed. The method combines the use of single walled carbon nanotubes (SWNTs) as a nano test tube, transmission electron microscopy (TEM) as an imaging tool, and a heating protocol that decouples the effect of the electron beam from the thermal activation. Polycyclic aromatic perchlorocoronene molecules are stable within SWNTs at room temperature, allowing imaging of individual molecules before and after each heating cycle between 500-600 °C.
View Article and Find Full Text PDFWe induce and study reactions of polyoxometalate (POM) molecules, [PWO] (Keggin) and [PWO] (Wells-Dawson), at the single-molecule level. Several identical carbon nanotubes aligned side by side within a bundle provided a platform for spatiotemporally resolved imaging of 100 molecules encapsulated within the nanotubes by transmission electron microscopy (TEM). Due to the entrapment of POM molecules their proximity to one another is effectively controlled, limiting molecular motion in two dimensions but leaving the third dimension available for intermolecular reactions between pairs of neighbouring molecules.
View Article and Find Full Text PDFPorous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single-walled carbon nanotube one-by-one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation.
View Article and Find Full Text PDF