Publications by authors named "S T Prisbrey"

Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

To study matter at extreme densities and pressures, we need mega laser facilities such as the National Ignition Facility as well as creative methods to make observations during timescales of a billionth of a second. To facilitate this, we developed a platform and diagnostic to characterize a new point-projection radiography configuration using two micro-wires irradiated by a short pulse laser system that provides a large field of view with up to 3.6 ns separation between images.

View Article and Find Full Text PDF

We study the high-pressure strength of Pb and Pb-4wt%Sb at the National Ignition Facility. We measure Rayleigh-Taylor growth of preformed ripples ramp compressed to ∼400  GPa peak pressure, among the highest-pressure strength measurements ever reported on any platform. We find agreement with 2D simulations using the Improved Steinberg-Guinan strength model for body-centered-cubic Pb; the Pb-4wt%Sb alloy behaves similarly within the error bars.

View Article and Find Full Text PDF

Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh-Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure.

View Article and Find Full Text PDF