Acta Neuropathol Commun
January 2025
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood.
View Article and Find Full Text PDFCuI cubane-type secondary building units are reticulated with a piperazine linker at room temperature to crystallize the metal-organic frameworks (MOFs) CuI(Pip) in a non-centrosymmetric 622 space group. For the first time, cubane cluster type MOF's strong piezoelectric nature has been studied by switching spectroscopy piezo force microscopy (SS-PFM) and piezo force microscopy (PFM) mapping of the crystal, with piezoelectric constant () ∼52.33 pm V, highlighting its potential for mechanical energy harvesting processes.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.
View Article and Find Full Text PDFThis study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8 T cells (STCs), and GH-GMA biomaterials.
View Article and Find Full Text PDFA unique optoelectronic synaptic device has been developed, leveraging the negative photoconductance property of a single-crystal material system called CsCoCl. This device exhibits a simultaneous volatile resistive switching response and sensitivity to optical stimuli, positioning CsCoCl as a promising candidate for optically enhanced neuromorphic applications.
View Article and Find Full Text PDF