J Phys Condens Matter
July 2022
Surprisingly, magnetoquantum oscillations (MQOs) characteristic of a metal with a Fermi surface have been observed in measurements of the topological Kondo insulator SmB. As these MQO have only been observed in measurements of magnetic torque (dHvA) and not in measurements of magnetoresistance (SdH), a debate has arisen as to whether the MQO are an extrinsic effect arising from rare-earth impurities, defects, and/or aluminum inclusions or an intrinsic effect revealing the existence of charge-neutral excitations. We report here the first observation of MQO in the low-temperature specific heat of SmB.
View Article and Find Full Text PDFStrong electronic nematic fluctuations have been discovered near optimal doping for several families of Fe-based superconductors, motivating the search for a possible link between these fluctuations, nematic quantum criticality, and high temperature superconductivity. Here we probe a key prediction of quantum criticality, namely power-law dependence of the associated nematic susceptibility as a function of composition and temperature approaching the compositionally tuned putative quantum critical point. To probe the 'bare' quantum critical point requires suppression of the superconducting state, which we achieve by using large magnetic fields, up to 45 T, while performing elastoresistivity measurements to follow the nematic susceptibility.
View Article and Find Full Text PDFWe report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor κ-(BEDT-TTF)_{2}Cu(NCS)_{2} as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit H_{p} is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state.
View Article and Find Full Text PDFWe report magnetocaloric and magnetic-torque evidence that in Cs2CuBr4--a geometrically frustrated Heisenberg S=1/2 triangular-lattice antiferromagnet--quantum fluctuations stabilize a series of spin states at simple increasing fractions of the saturation magnetization Ms. Only the first of these states--at M=1/3Ms--has been theoretically predicted. We discuss how the higher fraction quantum states might arise and propose model spin arrangements.
View Article and Find Full Text PDFConducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning with mobilities around 10(-4) cm(2) V(-1) s(-1) to a recent report of 1 cm(2) V(-1) s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism.
View Article and Find Full Text PDF