As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost.
View Article and Find Full Text PDFAnn Clin Transl Neurol
September 2024
Objective: The corticospinal tract (CST) is considered the most important motor output pathway comprising fibers from the primary motor cortex (M1) and various premotor areas. Damage to its descending fibers after stroke commonly leads to motor impairment. While premotor areas are thought to critically support motor recovery after stroke, the functional role of their corticospinal output for different aspects of post-stroke motor control remains poorly understood.
View Article and Find Full Text PDFCyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume.
View Article and Find Full Text PDFActive reinforcement learning enables dynamic prediction and control, where one should not only maximize rewards but also minimize costs such as of inference, decisions, actions, and time. For an embodied agent such as a human, decisions are also shaped by physical aspects of actions. Beyond the effects of reward outcomes on learning processes, to what extent can modeling of behavior in a reinforcement-learning task be complicated by other sources of variance in sequential action choices? What of the effects of action bias (for actions per se) and action hysteresis determined by the history of actions chosen previously? The present study addressed these questions with incremental assembly of models for the sequential choice data from a task with hierarchical structure for additional complexity in learning.
View Article and Find Full Text PDF