Mutations in genomic DNA often result in single-point missense mutations in proteins. For folded proteins, the functional effect of these missense mutations can often be understood by their impact on structure. However, missense mutations in intrinsically disordered protein regions (IDRs) remain poorly understood.
View Article and Find Full Text PDFOrganisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species.
View Article and Find Full Text PDFTranscription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations.
View Article and Find Full Text PDFThe conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying).
View Article and Find Full Text PDF