Amyloid accumulation in Alzheimer's disease (AD) is associated with synaptic damage and altered connectivity in brain networks. While measures of amyloid accumulation and biochemical changes in mouse models have utility for translational studies of certain therapeutics, preclinical analysis of altered brain connectivity using clinically relevant fMRI measures has not been well developed for agents intended to improve neural networks. Here, we conduct a longitudinal study in a double knock-in mouse model for AD (App/hMapt), monitoring brain connectivity by means of resting-state fMRI.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrP) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid--maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrP and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrP and lower the saturation concentration () of PrP by 100-fold.
View Article and Find Full Text PDF