Publications by authors named "S Stolnik"

Magnetic resonance imaging (MRI) of dry or solid materials in the gastrointestinal (GI) tract requires the use of contrast agents to enhance visualization of the dosage forms. In this study, we explore the novel use of manganese gluconate added to tablets. Manganese was released during tablet dissolution, generating a bright "halo" effect around the tablets, consistent with shortening of the longitudinal relaxation time of the bulk water surrounding the tablet.

View Article and Find Full Text PDF

Resistance mechanisms in brain tumors, such as medulloblastoma and glioblastoma, frequently involve the entrapment of chemotherapeutic agents within endosomes and the extracellular expulsion of drugs. These barriers to effective treatment are exacerbated in nanotechnology-based drug delivery systems, where therapeutic nanoparticles often remain confined within endosomes, thus diminishing their therapeutic efficacy. Addressing this challenge necessitates the development of novel strategies to enhance the efficiency of cancer therapies.

View Article and Find Full Text PDF

Nano- and micro-carriers of therapeutic molecules offer numerous advantages for drug delivery, and the shape of these particles plays a vital role in their biodistribution and their interaction with cells. However, analysing how microparticles are taken up by cells presents methodological challenges. Qualitative methods like microscopy provide detailed imaging but are time-consuming, whereas quantitative methods such as flow cytometry enable high-throughput analysis but struggle to differentiate between internalised and surface-bound particles.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in drug delivery are leveraging nano- and microsized carriers to improve the targeting and efficacy of therapies, though challenges in availability remain.
  • Particle shape significantly impacts how these carriers distribute in the body, with nonspherical micrometer-sized particles showing promise for targeting specific vascular areas, enhancing drug delivery precision.
  • The current study utilized photolithography to create variously shaped polysilicon microchips and assessed their interactions with macrophages, finding cuboid shapes had the highest cellular association and uptake, potentially making them more effective for drug delivery.
View Article and Find Full Text PDF

Understanding the internalization of nanosized particles by mucosal epithelial cells is essential in a number of areas including viral entry at mucosal surfaces, nanoplastic pollution, as well as design and development of nanotechnology-type medicines. Here, we report our comparative study on pathways of cellular internalization in epithelial Caco-2 cells cultured in vitro as either a polarized, differentiated cell layer or as nonpolarized, nondifferentiated cells. The study reveals a number of differences in the extent that endocytic processes are used by cells, depending on their differentiation status and the nature of applied nanoparticles.

View Article and Find Full Text PDF