Publications by authors named "S Smars"

Emissions of methane (CH₄) and nitrous oxide (N₂O) from composting of source-sorted food waste were studied at set temperatures of 40, 55 and 67°C in 10 trials performed in a controlled environment 200L compost reactor. CH₄ and N₂O concentrations were generally low. In trials with 16% O₂, the mean total CH₄ emission at all temperatures was 0.

View Article and Find Full Text PDF

A major problem for composting plants is odour emission. Slow decomposition during prolonged low-pH conditions is a frequent process problem in food waste composting. The aim was to investigate correlations between low pH, odour and microbial composition during food waste composting.

View Article and Find Full Text PDF

Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2.

View Article and Find Full Text PDF

Aims: To monitor emissions of NH(3) and N(2)O during composting and link these to ammonia oxidation rates and the community structure of ammonia oxidizing bacteria (AOB).

Methods And Results: A laboratory-scale compost reactor treating organic household waste was run for 2 months. NH(3) emissions peaked when pH started to increase.

View Article and Find Full Text PDF

The effects of different process temperatures (40, 55, and 67 degrees C) during composting of source-separated household waste were studied in a 200 L compost reactor at an oxygen concentration of 16%. The overall decomposition measured as carbon mineralization, decomposition of different carbon constituents, and the dynamics of nitrogen mineralization and the microbial community, are reported. Ammonia emissions at 67 degrees C were more than double those at lower temperatures, and they were lowest at 40 degrees C.

View Article and Find Full Text PDF