Publications by authors named "S Skourtis"

We argue that dry DNA charge transport in molecular junctions, over distances of tens of nanometers, can take place via independent intra-strand pathways involving the phosphate groups. Such pathways explain recent single-molecule experiments that compare currents in intact and nicked 100 base-pair double-stranded DNA. We explore the conditions that favor independent intra-strand transport channels with the participation of the phosphate groups, as opposed to purely base-mediated transport involving the pi-stacked bases and inter-strand transitions.

View Article and Find Full Text PDF

We propose design rules for building organic molecular bridges that enable coherent long-distance triplet-exciton transfer. Using these rules, we describe example polychromophoric structures with low inner-sphere exciton reorganization energies, low static and dynamic disorder, and enhanced π-stacking interactions between nearest-neighbor chromophores. These features lead to triplet-exciton eigenstates that are delocalized over several units at room temperature.

View Article and Find Full Text PDF

We describe a semianalytical/computational framework to explore structure-function relationships for singlet fission in Donor (D)-Bridge (B)-Acceptor (A) molecular architectures. The aim of introducing a bridging linker between the D and A molecules is to tune, by modifying the bridge structure, the electronic pathways that lead to fission and to D-A-separated correlated triplets. We identify different bridge-mediation regimes for the effective singlet-fission coupling in the coherent tunneling limit and show how to derive the dominant fission pathways in each regime.

View Article and Find Full Text PDF

Understanding charge transport in DNA molecules is a long-standing problem of fundamental importance across disciplines. It is also of great technological interest due to DNA's ability to form versatile and complex programmable structures. Charge transport in DNA-based junctions has been reported using a wide variety of set-ups, but experiments so far have yielded seemingly contradictory results that range from insulating or semiconducting to metallic-like behaviour.

View Article and Find Full Text PDF

We explain a recent experimental observation that the time-resolved electron paramagnetic resonance spectra of an organic molecule for optical excitation within a highly absorbing region of the molecule has similar intensities to the spectra for optical excitation in a nonabsorbing region [D. L. Meyer et al.

View Article and Find Full Text PDF