Publications by authors named "S Skornitzke"

This study aimed to evaluate the impact of contrast media application on CT attenuation of the bone using a novel calcium-only imaging technique (VCa) from dual-layer spectral detector CT (DLCT), which enables CT-based bone mineral density measurement unimpeded by soft tissue components. For this, true non-contrast (TNC) and venous phase images (VP) of n = 97 patients were acquired. CT attenuation of the first lumbar vertebra (L1) was measured in TNC-VCa, VP-VCa, and in virtual non-contrast images (VNC).

View Article and Find Full Text PDF

Purpose: To evaluate the prediction of vertebral fractures in plasma cell dyscrasias using dual-layer CT (DLCT) with quantitative assessment of conventional CT image data (CI), calcium suppressed image data (CaSupp), and calculation of virtual calcium-only (VCa) image data.

Material And Methods: Patients ( = 81) with the diagnosis of a plasma cell dyscrasia and whole-body DLCT at the time of diagnosis and follow-up were retrospectively enrolled. CI, CaSupp25, and CaSupp100 were quantitatively analyzed using regions of interest in the lumbar vertebral bodies and fractured vertebral bodies on baseline or follow-up imaging.

View Article and Find Full Text PDF

Objectives: To evaluate a novel calcium-only imaging technique (VCa) with subtracted bone marrow in osteoporosis in dual-layer CT (DLCT) compared to conventional CT images (CI) and dual-energy X-ray absorptiometry (DXA).

Material And Methods: Images of a multi-energy CT phantom with calcium inserts, quantitative CT calibration phantom, and of 55 patients (mean age: 64.6 ± 11.

View Article and Find Full Text PDF

Purpose: Complicated type B Aortic dissection is a severe aortic pathology that requires treatment through thoracic endovascular aortic repair (TEVAR). During TEVAR a stentgraft is deployed in the aortic lumen in order to restore blood flow. Due to the complicated pathology including an entry, a resulting dissection wall with potentially several re-entries, replicating this structure artificially has proven to be challenging thus far.

View Article and Find Full Text PDF

Objectives: With the introduction of clinical photon-counting detector computed tomography (PCD-CT) and its novel reconstruction techniques, a quantitative investigation of different acquisition and reconstruction settings is necessary to optimize clinical acquisition protocols for metal artifact reduction.

Materials And Methods: A multienergy phantom was scanned on a clinical dual-source PCD-CT (NAEOTOM Alpha; Siemens Healthcare GmbH) with 4 different central inserts: water-equivalent plastic, aluminum, steel, and titanium. Acquisitions were performed at 120 kVp and 140 kVp (CTDI vol 10 mGy) and reconstructed as virtual monoenergetic images (VMIs; 110-150 keV), as T3D, and with the standard reconstruction "none" (70 keV VMI) using different reconstruction kernels (Br36, Br56) and with as well as without iterative metal artifact reduction (iMAR).

View Article and Find Full Text PDF