Publications by authors named "S Silve"

The emergence of drug-resistant tuberculosis has created an urgent need for new anti-tubercular agents. Here, we report the discovery of a series of macrolides called sequanamycins with outstanding in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb). Sequanamycins are bacterial ribosome inhibitors that interact with the ribosome in a similar manner to classic macrolides like erythromycin and clarithromycin, but with binding characteristics that allow them to overcome the inherent macrolide resistance of Mtb.

View Article and Find Full Text PDF

Herein, we describe the myxobacterial natural product Corramycin isolated from Corallococcus coralloides. The linear peptide structure contains an unprecedented (2R,3S)-γ-N-methyl-β-hydroxy-histidine moiety. Corramycin exhibits anti-Gram-negative activity against Escherichia coli (E.

View Article and Find Full Text PDF

A defining characteristic of treating tuberculosis is the need for prolonged administration of multiple drugs. This may be due in part to subpopulations of slowly replicating or nonreplicating bacilli exhibiting phenotypic tolerance to most antibiotics in the standard treatment regimen. Confounding this problem is the increasing incidence of heritable multidrug-resistant A search for new antimycobacterial chemical scaffolds that can kill phenotypically drug-tolerant mycobacteria uncovered tricyclic 4-hydroxyquinolines and a barbituric acid derivative with mycobactericidal activity against both replicating and nonreplicating Both families of compounds depleted of intrabacterial magnesium.

View Article and Find Full Text PDF

A series of imidazo[1,2-a]indeno[1,2-e]pyrazin-4-ones that potently inhibit M. tuberculosis glutamine synthetase (GlnA1) has been identified by high throughput screening. Exploration of this series was performed owing to a short chemistry program.

View Article and Find Full Text PDF

SR31747A is an immunosuppressive agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae. In this microorganism, SR31747A was shown to inhibit the ERG2 gene product, namely the delta8-delta7 sterol isomerase, involved in the ergosterol biosynthesis pathway. Although previous genetic experiments pointed to this enzyme as the target for SR31747A in yeast, the existence of other potential targets could not be ruled out.

View Article and Find Full Text PDF