Minamata disease, caused by ingesting seafood contaminated with methylmercury dumped by corporations, was discovered in 1956; however, there has been no continued investigation to determine the full extent of the damage. Since 2004, it has been discovered that affected patients can be found in areas further away from Minamata than previously known. In the present study, we investigated various symptoms and somatosensory disturbances in western Miyanokawachi District, northern Himedo District, southwestern Nagashima District, and the uncontaminated Amami district and calculated the proportion of patients with sensory disturbances as a percentage of the population in each area.
View Article and Find Full Text PDFRiboflavin (RF) serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide, which are crucial cofactors in various metabolic processes. Strict regulation of cellular flavin homeostasis is imperative, yet information regarding the factors governing this regulation remains largely elusive. In this study, we first examined the impact of external flavin treatment on the Arabidopsis transcriptome to identify novel regulators of cellular flavin levels.
View Article and Find Full Text PDFHundreds of thousands of people living along the Yatsushiro Sea coast have been exposed to methylmercury from the contaminated water of the Chisso factory in Minamata. The most common neurological disorder caused by methylmercury is somatosensory disturbance, but very few studies have been conducted in the world to determine its pathophysiology and origin, including the Japanese cases, which have produced numerous intoxicated individuals. We have already shown in previous studies the body part where the disorder occurs and that its cause is not peripheral nerve damage but damage to the parietal lobes of the cerebrum.
View Article and Find Full Text PDFSound affects the medium it propagates through and studies on biological systems have shown various properties arising from this phenomenon. As a compressible media and a "collective mirror", water is influenced by all internal and external influences, changing its molecular structure accordingly. The water molecular structure and its changes can be observed as a whole by measuring its electromagnetic (EMG) spectrum.
View Article and Find Full Text PDFThe stromal and thylakoid membrane-bound ascorbate peroxidase isoforms are produced by the alternative splicing event of the 3'-terminal region of the APXII gene in spinach (Spinacia oleracea) and tobacco (Nicotiana tabacum), but not in Arabidopsis (Arabidopsis thaliana). However, all alternative splicing variants were detected in APXII gene-transformed Arabidopsis, indicating the occurrence of its regulatory mechanisms in Arabidopsis. The efficiency of this alternative splicing event in producing thylakoid membrane-bound ascorbate peroxidase mRNA is regulated by a splicing regulatory cis element, but trans splicing regulatory factor(s) for alternative splicing remain unclear.
View Article and Find Full Text PDF