This chapter describes some of the techniques in use in our laboratories for the investigation of PARP inhibitors in clinical medicine. More specifically, we are involved in investigating the utility of PARP inhibitors in the treatment of hematopoietic malignancies. We are also actively investigating the properties of the PARP systems in cell biology.
View Article and Find Full Text PDFIron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress.
View Article and Find Full Text PDFInactivation of the DNA mismatch repair pathway manifests as microsatellite instability, an accumulation of mutations that drives carcinogenesis. Here, we determined whether microsatellite instability in acute myeloid leukemia and myelodysplastic syndrome correlated with chromosomal instability and poly (ADP-ribose) polymerase (PARP) inhibitor sensitivity through disruption of DNA repair function. Acute myeloid leukemia cell lines (n=12) and primary cell samples (n=18), and bone marrow mononuclear cells from high-risk myelodysplastic syndrome patients (n=63) were profiled for microsatellite instability using fluorescent fragment polymerase chain reaction.
View Article and Find Full Text PDFThis chapter describes some of the techniques in use in our laboratories for the investigation of PARP inhibitors in clinical medicine. More specifically, we are involved in investigating the utility of PARP inhibitors in the treatment of hematopoietic malignancies. We are also actively investigating the properties of the PARP systems in cell biology.
View Article and Find Full Text PDF