Production of polymer and/or surfactant-coated crystalline nanoparticles of water-insoluble drugs (nanosuspensions) using wet bead milling is an important formulation approach to improve the bioavailability of said compounds. Despite the fact that there are a number of nanosuspensions on the market, there is still a deficiency in the characterization of these nanoparticles where further understanding may lead to the rational selection of polymer/surfactant. To this end small-angle neutron scattering (SANS) measurements were performed on drug nanoparticles milled in the presence of a range of polymers of varying molecular weight.
View Article and Find Full Text PDFStable, polymer-coated nanoparticles of two hydrophobic drugs, namely nabumetone and halofantrine, have been prepared by a wet-bead milling process performed in the presence of a stabilizing homopolymer, either hydroxypropylmethylcellulose (HPMC) or polyvinylpyrrolidone (PVP), of differing molecular weights and concentrations. Although nabumetone nanoparticles could only be produced when HPMC was used as stabilizing polymer, halofantrine nanoparticles could be prepared using either HPMC or PVP. Stable nanoparticles of nabumetone could be produced using a HPMC solution of viscosity average molecular weight, M(v), of 5 kg/mol over an approximate four fold polymer concentration range (0.
View Article and Find Full Text PDF