Publications by authors named "S Sennato"

Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required.

View Article and Find Full Text PDF

It has been shown recently, without an explanation of the possible molecular mechanisms involved, that 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic (EPPS) acid effectively protects from the neurotoxicity induced by oligomers and plaques formed by the protein amyloid-β protein. Here we report the same protective effect, obtained in vitro (HT22-diff cell line) and ex vivo (hippocampal slices) models, against amyloid neurotoxicity induced by oligomers of salmon Calcitonin (sCT), which has been shown to be a good model for the study of neurodegenerative diseases. Based on biophysical studies focusing on the protein aggregation kinetic and the interaction of the aggregates with model membranes, we propose a possible molecular mechanism underlying the protective effects.

View Article and Find Full Text PDF

Antibiotic resistance due to bacterial biofilm formation is a major global health concern that makes the search for new therapeutic approaches an urgent need. In this context,, -resveratrol (RSV), a polyphenolic natural substance, seems to be a good candidate for preventing and eradicating biofilm-associated infections but its mechanism of action is poorly understood. In addition, RSV suffers from low bioavailability and chemical instability in the biological media that make its encapsulation in delivery systems necessary.

View Article and Find Full Text PDF

The interplay of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes that show great potential for applications, ranging from plasmonic sensing to catalysis and drug delivery. However, the microgel-NP assembly process has not been investigated so far at the microscopic level, thus hindering the possibility of designing such hybrid systems a priori. In this work, we combine state-of-the-art numerical simulations with experiments to elucidate the fundamental mechanisms taking place when microgel-NP assembly is controlled by electrostatic interactions and the associated effects on the structure of the resulting complexes.

View Article and Find Full Text PDF

Carbon dots (CDs) are an emerging class of carbon nanoparticles, which for their characteristics have found applications in many fields such as catalysis, materials and biomedicine. Within this context, the application of CDs as antibacterial agents has received much attention in very recent years, while their use as antifungal nanoparticles has been scarcely investigated. Here we report a systematic investigation of the surface functional groups of CDs to study their influence on these nanoparticles' against Candida albicans.

View Article and Find Full Text PDF