We describe the establishment and current content of the ImmuneCODE™ database, which includes hundreds of millions of T-cell Receptor (TCR) sequences from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus, as well as over 160,000 high-confidence SARS-CoV-2-associated TCRs. This database is made freely available, and the data contained in it can be used to assist with global efforts to understand the immune response to the SARS-CoV-2 virus and develop new interventions.
View Article and Find Full Text PDFIntroduction: T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection.
Methods: Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2.
COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data.
View Article and Find Full Text PDFAdenoviral and mRNA vaccines encoding the viral spike (S) protein have been deployed globally to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Older individuals are particularly vulnerable to severe infection, probably reflecting age-related changes in the immune system, which can also compromise vaccine efficacy. It is nonetheless unclear to what extent different vaccine platforms are impacted by immunosenescence.
View Article and Find Full Text PDFSexually transmitted infections (STIs) have seen a considerable increase in the last years and given the health burden they may represent from both a personal and community perspective, they require surveillance and prevention programmes based on a timely and decentralized diagnosis. In this context, user-friendly rapid molecular tests may represent a good trade-off between diagnostic accuracy, accessibility and affordability. In this study we evaluated the diagnostic performance of a new real-time LAMP (Loop Mediated Isothermal Amplification) method for the rapid detection and differentiation of 7 major sexually transmissible pathogens by analysing real clinical samples (genital and extra-genital matrices) from individuals with suspected STIs.
View Article and Find Full Text PDF