Carbon-based novel low-dimensional XC/YC (with X, Y ≡ Si, Ge, and Sn) heterostructures have recently gained considerable scientific and technological interest in the design of electronic devices for energy transport use in extreme environments. Despite many efforts made to understand the structural, electronic, and vibrational properties of XC and XYC alloys, no measurements exist for identifying the phonon characteristics of superlattices (SLs) by employing either an infrared and/or Raman scattering spectroscopy. In this work, we report the results of a systematic study to investigate the lattice dynamics of the ideal (XC)m/(YC)n as well as graded (XC)10-∆/(X0.
View Article and Find Full Text PDFA hydrogen atom can either physisorb or chemisorb onto a graphene surface. To describe the interaction of H with graphene, we trained the C-C, H-H, and C-H interactions of the ReaxFF CHO bond order potential to reproduce Density Functional Theory (DFT) generated values of graphene cohesive energy and lattice constant, H dissociation energy, H on graphene adsorption potentials, and H formation on graphene using the Eley-Rideal (ER) and Langmuir-Hinshelwood (LH) processes. The results, generated from the trained H-graphene potentials, are in close agreement with the corresponding results from DFT.
View Article and Find Full Text PDF