Publications by authors named "S Selkirk"

Vibration, a potent mechanical stimulus for activating muscle spindle primary afferents, may improve gait performance in persons with multiple sclerosis (MS), but has yet to be developed and deployed for multiple leg muscles with application during walking training. This study explored the development of a cyclic focal muscle vibration (FMV) system, and the deployment feasibility to correct MS walking swing phase deficits in order to determine whether this intervention warrants comprehensive study. The system was deployed during twelve, two-hour sessions of walking with cyclic FMV over six weeks.

View Article and Find Full Text PDF

Study Design: Single-subject repeated measures study.

Objectives: Neuromuscular electrical stimulation (NMES) can enhance walking for people with partial paralysis from incomplete spinal cord injury (iSCI). This single-subject study documents an individual's experience who both received an experimental implanted NMES system and underwent clinical bilateral hinged total knee arthroplasty (TKA).

View Article and Find Full Text PDF

This case study evaluated the effect of implanted multijoint neuromuscular electrical stimulation gait assistance on oxygen consumption relative to walking without neuromuscular electrical stimulation after stroke. The participant walked slowly with an asymmetric gait pattern after stroke. He completed repeated 6-min walk tests at a self-selected walking speed with and without hip, knee, and ankle stimulation assistance.

View Article and Find Full Text PDF

We have recently demonstrated that partial inhibition of the cluster of differentiation 14 (CD14) innate immunity co-receptor pathway improves the long-term performance of intracortical microelectrodes better than complete inhibition. We hypothesized that partial activation of the CD14 pathway was critical to a neuroprotective response to the injury associated with initial and sustained device implantation. Therefore, here we investigated the role of two innate immunity receptors that closely interact with CD14 in inflammatory activation.

View Article and Find Full Text PDF