Publications by authors named "S Selbach"

Article Synopsis
  • * Using density functional theory, the research examines Bi vacancies and Bi-O vacancy pairs in BiFeO (BFO) under different levels of (111) epitaxial strain, revealing that compressive strain lowers vacancy formation energy while tensile strain raises it.
  • * The study finds that out-of-plane vacancy pairs are more stable under both types of strain, with significant energy reductions, and discusses how these results relate to Bi stoichiometry and conductivity in thin films.
View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzes how point defects, specifically Li and O vacancies, affect the electronic structure at neutral domain walls in LiNbO, with findings indicating that these defects can enable n- or p-type conductivity.
  • * The research suggests that by controlling point defect populations through methods like thermal annealing and electric fields, it's possible to achieve reversible tuning between n- and p-type conduction, paving the way for rewritable pn-junctions in applications.
View Article and Find Full Text PDF

Ferroelectric domain walls are a rich source of emergent electronic properties and unusual polar order. Recent studies show that the configuration of ferroelectric walls can go well beyond the conventional Ising-type structure. Néel-, Bloch-, and vortex-like polar patterns have been observed, displaying strong similarities with the spin textures at magnetic domain walls.

View Article and Find Full Text PDF

Hexagonal manganites, RMnO (R = Sc, Y, Ho-Lu), are potential oxygen storage materials for air separation due to their reversible oxygen storage and release properties. Their outstanding ability to absorb and release oxygen at relatively low temperatures of 250-400 °C holds promise of saving energy compared to current industrial methods. Unfortunately, the low temperature of operation also implies slow kinetics of oxygen exchange in these materials, which would make them inefficient in applications such as chemical looping air separation.

View Article and Find Full Text PDF

The effect of point defects and interactions with the substrate are shown by density functional theory calculations to be of significant importance for the structure and functional properties of hexagonal boron nitride (h-BN) films on highly ordered pyrolytic graphite (HOPG) and Ni(111) substrates. The structure, surface chemistry, and electronic properties are calculated for h-BN systems with selected intrinsic, oxygen, and carbon defects and with graphene hybrid structures. The electronic structure of a pristine monolayer of h-BN is dependent on the type of substrate, as h-BN is decoupled electronically from the HOPG surface and acts as bulk-like h-BN, whereas on a Ni(111) substrate, metallic-like behavior is predicted.

View Article and Find Full Text PDF