Organic molecules that emit near-infrared (NIR) fluorescence at wavelengths above 1000 nm, also known as the second NIR (NIR-II) biological window, are expected to be applied to optical imaging of deep tissues. The study of molecular states of NIR-II dye and its optical properties are important to yield well-controlled fluorescent probes; however, no such study has been conducted yet. Among the two major absorption peaks of the NIR-II dye, IR-1061, the ratio of the shorter wavelength (900 nm) to the longer one (1060 nm) increased with an increase in the dye concentration in tetrahydrofuran, suggesting that the 900 nm peak is due to the dimer formation of IR-1061.
View Article and Find Full Text PDFContactless thermal imaging generally relies on mid-infrared cameras and fluorescence imaging with temperature-sensitive phosphors. Fluorescent thermometry in the near-infrared (NIR) region is an emerging technique for analysing deep biological tissues but still requires observation depth calibration. We present an NIR fluorescence time-gated imaging (TGI) thermometry technology based on fluorescence lifetime, an intrinsic fluorophore time constant unrelated to observation depth.
View Article and Find Full Text PDFTissue clearing is a fundamental challenge in biology and medicine to achieve high-resolution optical imaging of tissues deep inside intact organs. The clearing methods reported up to now require long incubation times or physical/electrical pressure to achieve tissue clearing, which is done by matching the refractive indices of the whole sample and medium to that of the lipid layer. Here we show that phosphoric acid increases the refractive index of the medium and can increase the transparency of formalin-fixed tissue samples rapidly.
View Article and Find Full Text PDFThe labeling technique for cells with over-thousand-nanometer near-infrared (OTN-NIR) fluorescent probes has attracted much attention for in vivo deep imaging for cell tracking and cancer metastasis, because of low scattering and absorption of OTN-NIR light by biological tissues. However, the intracellular behavior following the uptake of the single-walled carbon nanotubes (SWCNTs), an OTN-NIR fluorophore, remains unknown. The aim of this study is to investigate the time-dependent change in OTN-NIR fluorescence images of cultured murine cancer cells (Colon-26) following treatment with a recently developed OTN-NIR fluorescent probe, epoxide-type oxygen-doped SWCNTs (o-SWCNTs).
View Article and Find Full Text PDFLuminescence nanothermometry has attracted much attention as a non-contact thermal sensing technique. However, it is not widely explored for in vivo applications owing to the low transparency of tissues for the light to be used. In this study, we performed biological temperature sensing in deep tissues using β-NaYF nanoparticles co-doped with Yb, Ho, and Er (NaYF: Yb, Ho, Er NPs), which displayed two emission peaks at 1150 nm (Ho) and 1550 nm (Er) in the >1000 nm near-infrared wavelength region, where the scattering and absorption of light by biological tissues are at the minimum.
View Article and Find Full Text PDF