Publications by authors named "S Schultes"

In the current study we have evaluated the applicability of ligand-based virtual screening (LBVS) methods for the identification of small fragment-like biologically active molecules using different similarity descriptors and different consensus scoring approaches. For this purpose, we have evaluated the performance of 14 chemical similarity descriptors in retrospective virtual screening studies to discriminate fragment-like ligands of three membrane-bound receptors from fragments that are experimentally determined to have no affinity for these proteins (true inactives). We used a complete fragment affinity data set of experimentally determined ligands and inactives for two G protein-coupled receptors (GPCRs), the histamine H1 receptor (H1R) and the histamine H4 receptor (H4R), and one ligand-gated ion channel (LGIC), the serotonin receptor (5-HT3AR), to validate our retrospective virtual screening studies.

View Article and Find Full Text PDF

The basic methylpiperazine moiety is considered a necessary substructure for high histamine H4 receptor (H4R) affinity. This moiety is however also the metabolic hot spot for various classes of H4R ligands (e.g.

View Article and Find Full Text PDF

Background And Purpose: The histamine H₄ receptor, originally thought to signal merely through Gαi proteins, has recently been shown to also recruit and signal via β-arrestin2. Following the discovery that the reference antagonist indolecarboxamide JNJ 7777120 appears to be a partial agonist in β-arrestin2 recruitment, we have identified additional biased hH₄R ligands that preferentially couple to Gαi or β-arrestin2 proteins. In this study, we explored ligand and receptor regions that are important for biased hH₄R signalling.

View Article and Find Full Text PDF

Background And Purpose: The recently proposed binding mode of 2-aminopyrimidines to the human (h) histamine H₄ receptor suggests that the 2-amino group of these ligands interacts with glutamic acid residue E182(5.46) in the transmembrane (TM) helix 5 of this receptor. Interestingly, substituents at the 2-position of this pyrimidine are also in close proximity to the cysteine residue C98(3.

View Article and Find Full Text PDF

SAR beyond protein-ligand interactions: By combining structure-affinity relationships, protein-ligand modeling studies, and quantum mechanical calculations, we show that ligand conformational energies and basicity play critical roles in ligand binding to the histamine H4 receptor, a GPCR that plays a key role in inflammation.

View Article and Find Full Text PDF