Publications by authors named "S Saputo"

The serine incorporator (SERINC) family of proteins are a family of multipass transmembrane proteins associated with biosynthesis of serine-containing phospholipids and sphingolipids. Humans have 5 paralogs, SERINC1-5, which have been linked to disease including variable expression in tumor lines and possessing activity as restriction factors against HIV-1. Despite recent studies, the cellular function of SERINC proteins have yet to be fully elucidated.

View Article and Find Full Text PDF

Composite materials, like metals, are subject to fatigue effects, representing one of the main causes for component collapse in carbon fiber-reinforced polymers. Indeed, when subject to low stress cyclic loading, carbon fiber-reinforced polymers exhibit gradual degradation of the mechanical properties. The numerical simulation of this phenomenon, which can strongly reduce time and costs to market, can be extremely expensive in terms of computational effort since a very high number of static analyses need to be run to take into account the real damage propagation due the fatigue effects.

View Article and Find Full Text PDF

This work is focused on the investigation of the structural behavior of a composite floor beam, located in the cargo zone of a civil aircraft, subjected to cyclical low-frequency compressive loads with different amplitudes. In the first stage, the numerical models able to correctly simulate the investigated phenomenon have been defined. Different analyses have been performed, aimed to an exhaustive evaluation of the structural behavior of the test article.

View Article and Find Full Text PDF

Streptococcus mutans is a major etiologic agent of dental caries, which is the most common chronic infectious disease worldwide. S. mutans is particularly adept at causing caries due to its exceptional capacity to form biofilms and its ability to survive acidic conditions that arrest acid production and growth in many more benign members of the oral microbiota.

View Article and Find Full Text PDF

In this paper, the skin-stringer separation phenomenon that occurs in stiffened composite panels under compression is numerically studied. Since the mode I fracture toughness and, consequently, the skin-stringer separation can be influenced by the fibre bridging phenomenon at the skin-stringer interface, in this study, comparisons among three different material systems with different fibre bridging sensitivities have been carried out. Indeed, a reference material system has been compared, in terms of toughness performance, against two materials with different degrees of sensitivity to fibre bridging.

View Article and Find Full Text PDF