Studies have reported the potential role of Boswellic acids (BAs), bioactive pentacyclic triterpenes from (BS), in treating rheumatoid arthritis (RA). However, poor water solubility and limited oral absorption are restricting factors for its better therapeutic efficacy. Based on these assumptions, the current study aimed to develop naturosomal delivery of BAs to boost their extremely low bioavailability, colloidal stability, and water solubility.
View Article and Find Full Text PDFAims: To enhance the therapeutic potential of Cabozantinib (CBZ), a tyrosine kinase inhibitor with limited water solubility, low bioavailability, and high toxicity, by developing a Cabozantinib-Phospholipid Complex (CBZ-PLS).
Materials & Methods: CBZ-PLS was formulated using solvent evaporation with a Box-Behnken design and characterized using various techniques to confirm molecular interactions. Solubility, in vitro release, pharmacokinetics, and toxicity were evaluated.
The efficacy of dasatinib (DAS) in treating hepatocellular carcinoma (HCC) is hindered by its poor bioavailability, limiting its clinical potential. In this study, we explored the use of TPGS-Soluplus micelles as an innovative drug delivery platform to enhance DAS solubility, stability, and therapeutic impact. A series of TPGS-Soluplus copolymers were synthesized, varying the D-α-tocopheryl polyethylene glycol succinate (TPGS) forms (1000, 2000, and 3500) and adjusting the TPGS to Soluplus weight ratios (1:1, 1:2, and 1:3).
View Article and Find Full Text PDFThe objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables.
View Article and Find Full Text PDF