Publications by authors named "S Sanchez-Fortun"

The physicochemical properties of aluminum oxide nanoparticles (AlO-NPs or AlNPs) allow them to remain suspended in water for extended periods. Despite this, AlNPs are one of the least studied types of metal nanoparticles and pose a significant risk to aquatic ecosystems. Therefore, it is essential to understand the toxic mechanisms of AlNPs on microalgae and cyanobacteria, as they can have adverse effects on the entire aquatic food web.

View Article and Find Full Text PDF

The use of plastic materials has brought about significant social benefits but has also led to negative consequences, particularly their accumulation in aquatic environments. Studies have shown that small plastic particles, known as microplastics (MPs), can carry various harmful pollutants, such as heavy metals (HMs). Therefore, the aim of this research is to investigate the impact of polyethylene-type MPs on the long-term exposure of different HMs on freshwater microalgae Scenedesmus armatus and cyanobacteria Microcystis aeruginosa, in both isolated cultures and phytoplanktonic community conditions.

View Article and Find Full Text PDF

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations.

View Article and Find Full Text PDF

Zero-valent nano-iron particles (nZVI) are increasingly present in freshwater aquatic environments due to their numerous applications in environmental remediation. However, despite the broad benefits associated with the use and development of nZVI nanoparticles, the potential risks of introducing them into the aquatic environment need to be considered. Special attention should be focused on primary producer organisms, the basal trophic level, whose impact affects the rest of the food web.

View Article and Find Full Text PDF

Microplastic (MP)-colonizing microorganisms are important links for the potential impacts on environmental, health, and biochemical circulation in various ecosystems but are not yet well understood. In addition, biofilms serve as bioindicators for the evaluation of pollutant effects on ecosystems. This study describes the ability of three polyethylene-type microplastics, white (W-), blue (B-), and fluorescent blue (FB-) MPs, to support microbial colonization of Pseudomonas aeruginosa, the effect of mixed organic contaminants (OCs: amoxicillin, ibuprofen, sertraline, and simazine) on plastic-associated biofilms, and the role of biofilms as transfer vectors of such emerging pollutants.

View Article and Find Full Text PDF