Viral diversity has been discovered across scales from host individuals to populations. However, the drivers of viral community assembly are still largely unknown. Within-host viral communities are formed through co-infections, where the interval between the arrival times of viruses may vary.
View Article and Find Full Text PDFMultiparasite communities inhabiting individual hosts are common and often consist of parasites from multiple taxa. The effects of parasite community composition and complexity on host fitness are critical for understanding how host-parasite coevolution is affected by parasite diversity. To test how naturally occurring parasites affect host fitness of multiple host genotypes, we performed a common-garden experiment where we inoculated four genotypes of host plant Plantago lanceolata with six microbial parasite treatments: three single-parasite treatments, a fungal mixture, a viral mixture, and a cross-kingdom treatment.
View Article and Find Full Text PDFViruses are a vastly underestimated component of biodiversity that occur as diverse communities across hierarchical scales from the landscape level to individual hosts. The integration of community ecology with disease biology is a powerful, novel approach that can yield unprecedented insights into the abiotic and biotic drivers of pathogen community assembly. Here, we sampled wild plant populations to characterize and analyze the diversity and co-occurrence structure of within-host virus communities and their predictors.
View Article and Find Full Text PDFUnlabelled: Interactions among parasite species coinfecting the same host individual can have far reaching consequences for parasite ecology and evolution. How these within-host interactions affect epidemics may depend on two non-exclusive mechanisms: parasite growth and reproduction within hosts, and parasite transmission between hosts. Yet, how these two mechanisms operate under coinfection, and how sensitive they are to the composition of the coinfecting parasite community, remains poorly understood.
View Article and Find Full Text PDFThe trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied.
View Article and Find Full Text PDF