Printed circuit boards (PCBs) are the most complex and valuable component of electronic devices, but only 34% of them are recycled in an environmentally sound manner. Improving the recycling rate and efficiency requires a fast, reliable and uncostly analytical method. Although the X-ray fluorescence (XRF) shows high potential, it is often unreliable.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2021
Waste electrical and electronic equipment (WEEE) can contain brominated flame retardants (BFRs) that pose a threat to human health and the environment. In addition, Br-containing plastics reduce the recycling potential of WEEE. In order to gain a better insight into the distribution of Br in plastics from WEEE, the total concentration of Br was measured on the level of device types and plastic components using handheld X-ray fluorescence (hXRF).
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2019
In the last few decades, the rapid technological evolution has led to a growing generation of waste electrical and electronic equipment (WEEE). Not rarely, it has been exported from industrialized to developing countries, where it represents a secondary source of valuable materials such as gold, copper, and silver. The recycling of WEEE is often carried out without any environmental and health protection.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2019
Waste electric and electronic equipment (WEEE) represents a potential secondary source of valuable materials, whose recovery is a growing business activity worldwide. In low-income countries, recycling is carried out under poorly controlled conditions resulting in severe environmental pollution. High concentrations of both metallic and organic pollutants have been confirmed in air, soil, water, and sediments in countries with informal recycling areas.
View Article and Find Full Text PDF