Diamond as a templating substrate is largely unexplored, and the unique properties of diamond, including its large bandgap, thermal conductance, and lack of cytotoxicity, makes it versatile in emergent technologies in medicine and quantum sensing. Surface termination of an inert diamond substrate and its chemical reactivity are key in generating new bonds for nucleation and growth of an overlayer material. Oxidized high-pressure high temperature (HPHT) nanodiamonds (NDs) are largely terminated by alcohols that act as nucleophiles to initiate covalent bond formation when an electrophilic reactant is available.
View Article and Find Full Text PDFMetastable compounds have greatly expanded the synthesizable compositions of solid-state materials and have attracted enormous amounts of attention in recent years. Especially, mechanochemically enabled metastable materials synthesis has been very successful in realizing cation-disordered materials with highly simple crystal structures, such as rock salts. Application of the same strategy for other structural types, especially for non-close-packed structures, is peculiarly underexplored.
View Article and Find Full Text PDFBackground: Prehospital low-titer group O whole blood (LTOWB) used for patients with life-threatening hemorrhage is often RhD positive. The most important complication following RhD alloimmunization is hemolytic disease of the fetus and newborn (HDFN). Preceding clinical use of RhD positive LTOWB, we estimated the risk of HDFN due to LTOWB prehospital transfusion in the Finnish population.
View Article and Find Full Text PDF