We demonstrate experimentally and computationally an intricate cavity size dependence of the anomalous near-infrared mode spectrum of an ordinary optical resonator that is combined with a ZnO:Ga-based hyperbolic metamaterial (HMM). Specifically, we reveal the existence of a resonance in subwavelength-sized cavities and demonstrate control over the first-order cavity mode dispersion. We elaborate that these effects arise due to the HMM combining the mode dispersions of purely metallic and purely dielectric cavity cores into a distinct intermediate regime.
View Article and Find Full Text PDFDue to its wide band gap and high carrier mobility, ZnO is, among other transparent conductive oxides, an attractive material for light-harvesting and optoelectronic applications. Its functional efficiency, however, is strongly affected by defect-related in-gap states that open up extrinsic decay channels and modify relaxation timescales. As a consequence, almost every sample behaves differently, leading to irreproducible or even contradicting observations.
View Article and Find Full Text PDFPhys Rev Lett
March 2017
We report on the strong coupling of surface plasmon polaritons and molecular vibrations in an organic-inorganic plasmonic hybrid structure consisting of a ketone-based polymer deposited on top of a silver layer. Attenuated-total-reflection spectra of the hybrid reveal an anticrossing in the dispersion relation in the vicinity of the carbonyl stretch vibration of the polymer with an energy splitting of the upper and lower polariton branch up to 15 meV. The splitting is found to depend on the molecular layer thickness and saturates for micrometer-thick films.
View Article and Find Full Text PDFHyperbolic metamaterials (HMMs) have attracted much attention because they allow for broadband enhancement of spontaneous emission and imaging below the diffraction limit. However, HMMs with traditional metals as metallic component are not suitable for applications in the infrared spectral range. Using Ga-doped ZnO, we demonstrate monolithic HMMs operating at infrared wavelengths.
View Article and Find Full Text PDFWe demonstrate negative refraction at telecommunication wavelengths through plasmon-photon hybridization on a simple microcavity with metallic mirrors. Instead of using conventional metals, the plasmonic excitations are provided by a heavily doped semiconductor which enables us to tune them into resonance with the infrared photon modes of the cavity. In this way, the dispersion of the resultant hybrid cavity modes can be widely adjusted.
View Article and Find Full Text PDF