Publications by authors named "S S Walia"

In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Black phosphorus (BP), a two-dimensional material, has gathered significant attention over the last decade, primarily due to its unique physiochemical properties and potential role in various biomedical applications. This review provides an in-depth overview of the synthesis, nanomaterial properties, interactions, and biomedical uses of BP, with a particular focus on wound management. The structure, synthesis methods, and stability of BP are discussed, highlighting the high degree of nanomaterial biocompatibility and cytotoxicity.

View Article and Find Full Text PDF

Objective: To evaluate the functional and radiological outcomes of long bone fractures in non-union cases treated with nail and plate with osteo-periosteal flaps.

Methods: This prospective study included 20 patients with non-union long bone fractures treated at Dr. DY Patil Medical College, Pimpri, Pune over a two-year period.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a significant concern to society as it threatens the effectiveness of antibiotics and leads to increased morbidity and mortality rates. Innovative approaches are urgently required to address this challenge. Among promising solutions, two dimensional (2-D) nanomaterials with layered crystal structures have emerged as potent antimicrobial agents owing to their unique physicochemical properties.

View Article and Find Full Text PDF