Publications by authors named "S S R S Alwee"

Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production.

View Article and Find Full Text PDF

Oil palm breeding has been progressing very well in Southeast Asia, especially in Malaysia and Indonesia. Despite this progress, there are still problems due to the difficulty of controlled crossing in oil palm. Contaminated/illegitimate progeny has appeared in some breeding programs; late and failure of detection by the traditional method causes a waste of time and labor.

View Article and Find Full Text PDF

Background: Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified.

View Article and Find Full Text PDF

The mantled floral phenotype of oil palm (Elaeis guineensis) affects somatic embryogenesis-derived individuals and is morphologically similar to mutants defective in the B-class MADS-box genes. This somaclonal variation has been previously demonstrated to be associated to a significant deficit in genome-wide DNA methylation. In order to elucidate the possible role of DNA methylation in the transcriptional regulation of EgDEF1, the APETALA3 ortholog of oil palm, we studied this epigenetic mark within the gene in parallel with transcript accumulation in both normal and mantled developing inflorescences.

View Article and Find Full Text PDF

Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential.

View Article and Find Full Text PDF