The paper presents a significant improvement to the implementation of the spectral relaxation method (SRM) for solving nonlinear partial differential equations that arise in the modelling of fluid flow problems. Previously the SRM utilized the spectral method to discretize derivatives in space and finite differences to discretize in time. In this work we seek to improve the performance of the SRM by applying the spectral method to discretize derivatives in both space and time variables.
View Article and Find Full Text PDFA spectral relaxation method used with bivariate Lagrange interpolation is used to find numerical solutions for the unsteady three-dimensional flow problem of an Oldroyd-B fluid with variable thermal conductivity and heat generation. The problem is governed by a set of three highly coupled nonlinear partial differential equations. The method, originally used for solutions of systems of ordinary differential equations is extended to solutions of systems of nonlinear partial differential equations.
View Article and Find Full Text PDFThe stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems.
View Article and Find Full Text PDFScientificWorldJournal
December 2015
Based on well-known fourth-order Ostrowski's method, we proposed many new interesting optimal families of eighth-order multipoint methods without memory for obtaining simple roots. Its geometric construction consists in approximating fn' at zn in such a way that its average with the known tangent slopes fn' at xn and yn is the same as the known weighted average of secant slopes and then we apply weight function approach. The adaptation of this strategy increases the convergence order of Ostrowski's method from four to eight and its efficiency index from 1.
View Article and Find Full Text PDFThis paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation.
View Article and Find Full Text PDF