Class I ribonucleotide reductases consisting of α and β subunits convert ribonucleoside diphosphates to deoxyribonucleoside diphosphates involving an intricate free radical mechanism. The generation of free radicals in the Class Ib ribonucleotide reductases is mediated by di-manganese ions in the β subunits and is externally assisted by flavodoxin-like NrdI subunit. This is unlike Class Ia ribonucleotide reductases, where the free radical generation is initiated at its di-iron centre in the β subunits with no external support from another subunit.
View Article and Find Full Text PDFUnderstanding disease pathogenesis caused by bacteria/virus, from the perspective of individual pathogen has provided meaningful insights. However, as viral and bacterial counterparts might inhabit the same infection site, it becomes crucial to consider their interactions and contributions in disease onset and progression. The objective of the review is to highlight the importance of considering both viral and bacterial agents during the course of coinfection.
View Article and Find Full Text PDFThe current tuberculosis (TB) treatment is challenged by a complex first-line treatment for drug-sensitive (DS) TB. Additionally, the prevalence of multidrug (MDR)- and extensively drug (XDR)-resistant TB necessitates the search for new drug prototypes. We synthesized and screened 30 hybrid compounds containing aminopyridine and 2-chloro-3-formyl quinoline to arrive at a compound with potent antimycobacterial activity, UH-NIP-16.
View Article and Find Full Text PDFUnlabelled: Bacterial communities are often concomitantly present with numerous microorganisms in the human body and other natural environments. Amplicon-based microbiome studies have generally paid skewed attention, that too at a rather shallow genus level resolution, to the highly abundant bacteriome, with interest now forking toward the other microorganisms, particularly fungi. Given the generally sparse abundance of other microbes in the total microbiome, simultaneous sequencing of amplicons targeting multiple microbial kingdoms could be possible even with full multiplexing.
View Article and Find Full Text PDFBackground: The healthy as well as dysbiotic state of an ecosystem like human body is known to be influenced not only by the presence of the bacterial groups in it, but also with respect to the associations within themselves. Evidence reported in biomedical text serves as a reliable source for identifying and ascertaining such inter bacterial associations. However, the complexity of the reported text as well as the ever-increasing volume of information necessitates development of methods for automated and accurate extraction of such knowledge.
View Article and Find Full Text PDF