Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important.
View Article and Find Full Text PDFWe demonstrate optical nonthermal excitation of exchange dominated spin waves of different orders in a magnetophotonic crystal. The magnetophotonic structure consists of a thin magnetic film and a Bragg stack of nonmagnetic layers to provide a proper nonuniform interference pattern of the inverse Faraday effect induced by light in the magnetic layer. We found a phenomenon of the pronounced phase slippage of the inverse Faraday effect distribution when the pump wavelength is within the photonic band gap of the structure.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2024
The resistance of biofilms to antibiotics is a key factor that makes bacterial infections unsusceptible to antimicrobial therapy. The results of classical tests of cell sensitivity to antibiotics cannot be used to predict therapeutic success in infections associated with biofilm formation. We describe a simple and rapid method for the real-time evaluation of bacterial biofilm sensitivity to antibiotics, with Pseudomonas putida and ampicillin as examples.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
May 2024
In the current study we propose a magneto-optical system for registration and analysis of magnetic nano- and microparticles magnetic relaxation. The core of our system is the novel compact magnetometer based on an yttrium-iron garnet film and working at room temperature. The sensor demonstrates sensitivity of 35 pT/√{Hz} at 79 Hz and recovery time less than 100 µs, which allows to register quite fast magnetic relaxations of a low amplitude.
View Article and Find Full Text PDFInfection diagnosis and antibiotic sensitivity testing are important aspects of clinical microbiology that are in dire need of improvement owing to the inadequate current standards in the early detection of bacterial response to antibiotics. The increasing antimicrobial resistance is a serious global threat to human health. Current resistance-detecting methods, using the phenotypic antibiotic sensitivity test, which measures bacterial growth as affected by antibiotics, have long analysis times.
View Article and Find Full Text PDF