Publications by authors named "S S Dhesi"

Nanoscale detection and control of the magnetic order underpins a spectrum of condensed-matter research and device functionalities involving magnetism. The key principle involved is the breaking of time-reversal symmetry, which in ferromagnets is generated by an internal magnetization. However, the presence of a net magnetization limits device scalability and compatibility with phases, such as superconductors and topological insulators.

View Article and Find Full Text PDF

Reversible electroporation refers to the use of high voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response.

View Article and Find Full Text PDF

Avalanche resistive switching is the fundamental process that triggers the sudden change of the electrical properties in solid-state devices under the action of intense electric fields. Despite its relevance for information processing, ultrafast electronics, neuromorphic devices, resistive memories and brain-inspired computation, the nature of the local stochastic fluctuations that drive the formation of metallic regions within the insulating state has remained hidden. Here, using operando X-ray nano-imaging, we have captured the origin of resistive switching in a VO-based device under working conditions.

View Article and Find Full Text PDF

We present a spectroscopic study of the magnetic properties ofFe3-δGeTe2single crystals with varying Fe content, achieved by tuning the stoichiometry of the crystals. We carried out x-ray absorption spectroscopy and analyzed the x-ray circular magnetic dichroism spectra using the sum rules, to determine the orbital and spin magnetic moments of the materials. We find a clear reduction of the spin and orbital magnetic moment with increasing Fe deficiency.

View Article and Find Full Text PDF

Altermagnetism is a recently identified magnetic symmetry class combining characteristics of conventional collinear ferromagnets and antiferromagnets, that were regarded as mutually exclusive, and enabling phenomena and functionalities unparalleled in either of the two traditional elementary magnetic classes. In this work we use symmetry, ab initio theory, and experiments to explore x-ray magnetic circular dichroism (XMCD) in the altermagnetic class. As a representative material for our XMCD study we choose α-MnTe with compensated antiparallel magnetic order in which an anomalous Hall effect has been already demonstrated.

View Article and Find Full Text PDF